Chain Length and Thermal Sensitivity of the Infrared Spectra of a Homologous Series of Anhydrous Silver(I) n-Alkanoates

Author:

Nelson Peter N.12

Affiliation:

1. Department of Chemistry, The University of the West Indies, Mona Campus, St. Andrew, Kingston 7, Jamaica

2. Department of Materials and Interfaces, Weizmann Institute of Science, P.O. Box 26, Rehovot, Israel

Abstract

The thermal and chain length sensitivity of the infrared spectra of some solid state anhydrous silver(I) salts (n-octanoate to n-eicosanoate, inclusive) are discussed. At ambient temperature, the tilted alkyl chains, anchored to the metal planes via chelating bidentate coordination to the silver ions, are crystallized in the fully extended all-trans conformation. Interestingly, though all compounds are crystallized in a monoclinic crystal system, their lateral chain packing, van der Waals effects, and hence vibrational features are chain length-dependent. This is a direct result of electrostatic effects of the COO group in addition to vibrational coupling between CH2, CH3, and COO modes, an effect which varies significantly with chain length. Variable temperature infrared measurements indicate significant irreversible changes in the metal-carboxyl coordination sphere, most likely due to bond fission. For long chain adducts (nc>12), thermally induced crystal system switching, monoclinic to triclinic, indicates greater thermal sensitivity of their alkyl chains. During heating, the regions of the hydrocarbon chains, furthest from the COO, become increasingly molten and mobile as the stepwise melt advances towards the solid COO moieties. This solid-liquid melting behaviour is responsible for mesophase formation in metal carboxylate systems.

Publisher

Hindawi Limited

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3