Phosphoprotein Phosphatase 1 Is Required for Extracellular Calcium-Induced Keratinocyte Differentiation

Author:

Shrestha Chandrama1ORCID,Tang Yuanyuan1ORCID,Fan Hong1,Li Lusha1ORCID,Zeng Qin1,Pennypacker Sally D.2,Bikle Daniel D.2ORCID,Xie Zhongjian12

Affiliation:

1. Institute of Endocrinology and Metabolism, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China

2. Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, CA 94121, USA

Abstract

Extracellular calcium is a major regulator of keratinocyte differentiation in vitro and appears to play that role in vivo, but the mechanism is unclear. We have previously demonstrated that, following calcium stimulation, PIP5K1αis recruited by the E-cadherin-β-catenin complex to the plasma membrane where it provides the substrate PIP2 for both PI3K and PLC-γ1. This signaling pathway is critical for calcium-induced generation of second messengers including IP3 and intracellular calcium and keratinocyte differentiation. In this study, we explored the upstream regulatory mechanism by which calcium activates PIP5K1αand the role of this activation in calcium-induced keratinocyte differentiation. We found that treatment of human keratinocytes in culture with calcium resulted in an increase in serine dephosphorylation and PIP5K1αactivation. PP1 knockdown blocked extracellular calcium-induced increase in serine dephosphorylation and activity of PIP5K1αand induction of keratinocyte differentiation markers. Knockdown of PLC-γ1, the downstream effector of PIP5K1α, blocked upstream dephosphorylation and PIP5K1αactivation induced by calcium. Coimmunoprecipitation revealed calcium induced recruitment of PP1 to the E-cadherin-catenin-PIP5K1αcomplex in the plasma membrane. These results indicate that PP1 is recruited to the extracellular calcium-dependent E-cadherin-catenin-PIP5K1αcomplex in the plasma membrane to activate PIP5K1α, which is required for PLC-γ1 activation leading to keratinocyte differentiation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3