The Offset Azimuth Prediction of Light Buoy Based on Markov Chain Optimization Multiplicative Seasonal Model

Author:

Wu Zhizheng1ORCID,Ren Lüzhen1ORCID,Zhou Shibo1,Zhang Yuqi2,Xu Wenpeng1,Zhang Heyang1

Affiliation:

1. Navigation College, Jimei University, Xiamen 361021, China

2. Yonsei University, Wonju 03722, Republic of Korea

Abstract

Aimed at the problem of the large error caused by uncertain factors in the fitting process of the traditional multiplicative seasonal model, the advantages of the Markov chain in this study are applied to the multiplicative seasonal model to optimize the prediction results. Based on the residual value between the theoretical and actual values, the values of different intervals are divided into states. The transition probability matrix is established through different probabilities; then, the weighted sum of different prediction probabilities is carried out to select the optimal prediction state. The real number of Meizhou Bay portlight buoys is used to verify the prediction effect of the model, and MAE, MAPE, RMSE, RRMSE, SSE, R2 are used to calculate the error between the predicted value and the actual value. The results show that compared to the traditional multiplicative seasonal model and other prediction models, the prediction MAE of the MC-SARIMA model is decreased by 2.19003794, the MAPE is decreased by 0.66%, the RMSE is decreased by 2.092671823, the RRMSE is decreased by 0.006221352, the SSE is decreased by 404.0231931, and the R2 is increased by 0.224686247. It shows that the multiplicative seasonal model optimized by the Markov chain can predict the azimuth data of the light buoy more effectively than the traditional multiplicative seasonal model and other prediction models.

Funder

Natural Science Foundation of Fujian Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3