Musculoskeletal Rehabilitation Status Monitoring Based on sEMG

Author:

Han Xue1,Zhao Yan2,Wang Feng2,Liu Zun1ORCID

Affiliation:

1. Cangzhou Medical College, Cangzhou 061001, China

2. Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine (Hebei), Cangzhou 061012, China

Abstract

The reduction and improper movements in people’s modern life will lead to physical discomfort, pain, and inflammation, which have generally affected the quality of people’s daily life and work efficiency. The pain caused by improper movements are called musculoskeletal pain, which can be relieved or eliminated with treatment. Musculoskeletal disorders are actually one of the most common medical conditions, which affects approximately one quarter of all adults in the world. Although surface electromyography (sEMG) is an acknowledged technology in musculoskeletal rehabilitation study, it is considerably significant to monitor the musculoskeletal rehabilitation status based on sEMG. In order to monitor the musculoskeletal rehabilitation status, we combine fuzzy theory with neural network. This article proposes variable size, sliding window-based, generalized, dynamic, fuzzy neural network (GD-FNN), musculoskeletal rehabilitation status monitoring, that is, the window length of sliding window of sample data changes with the size of sample period. Finally, this study made a simulation on subjects, and the experimental results show that the proposed variable size, sliding window-based GD-FNN, musculoskeletal rehabilitation status monitoring method not only has good monitoring effect but also put on a good performance in root-mean-squared error (RMSE) and mean absolute percentage error (MAPE).

Funder

Cangzhou Key Research and Development program Guidance Project

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of hand grip strength based on surface electromyographic signals;Journal of King Saud University - Computer and Information Sciences;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3