Efficient Semantic Enrichment Process for Spatiotemporal Trajectories

Author:

Zhao Bin1ORCID,Liu Mingyu1ORCID,Han Jingjing2ORCID,Ji Genlin1ORCID,Liu Xintao3ORCID

Affiliation:

1. School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, China

2. Quality Assurance Office, Jiangsu Open University, Nanjing, China

3. Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, China

Abstract

The increasing availability of location-acquisition technologies has enabled collecting large-scale spatiotemporal trajectories, from which we can derive semantic information in urban environments, including location, time, direction, speed, and point of interest. Such semantic information can give us a semantic interpretation of movement behaviors of moving objects. However, existing semantic enrichment process approaches, which can produce semantic trajectories, are generally time-consuming. In this paper, we propose an efficient semantic enrichment process framework to annotate spatiotemporal trajectories by using geographic and application domain knowledge. The framework mainly includes preannotated semantic trajectory storage phase, spatiotemporal similarity measurement phase, and semantic information matching phase. Having observed the common trajectories in the same geospatial object scenes, we propose a semantic information matching algorithm to match semantic information in preannotated semantic trajectories to new spatiotemporal trajectories. In order to improve the efficiency of this approach, we build a spatial index to enhance the preannotated semantic trajectories. Finally, the experimental results based on a real dataset demonstrate the effectiveness and efficiency of our proposed approaches.

Funder

Postgraduate Research Innovation Program of Jiangsu Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference29 articles.

1. Semantic Analysis Techniques using Twitter Datasets on Big Data: Comparative Analysis Study

2. Research on the LBS matching based on stay point of the semantic trajectory;L. H. Qi;Journal of Geo-Information Science,2014

3. Accurate location prediction of social-users using mHMM;A. Hussain;Intelligent Automation & Soft Computing,2019

4. On Selecting Effective Patterns for Fast Support Vector Regression Training

5. Web and semantic web query languages: a survey;T. Bry;Reasoning Web, Msida, Malta: Computer Science,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. STO2Vec: A Multiscale Spatio-Temporal Object Representation Method for Association Analysis;ISPRS International Journal of Geo-Information;2023-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3