SW-LZMA: Parallel Implementation of LZMA Based on SW26010 Many-Core Processor

Author:

Li Bingzheng1ORCID,Xu Jinchen1,Liu Zijing1

Affiliation:

1. State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China

Abstract

With the development of high-performance computing and big data applications, the scale of data transmitted, stored, and processed by high-performance computing cluster systems is increasing explosively. Efficient compression of large-scale data and reducing the space required for data storage and transmission is one of the keys to improving the performance of high-performance computing cluster systems. In this paper, we present SW-LZMA, a parallel design and optimization of LZMA based on the Sunway 26010 heterogeneous many-core processor. Combined with the characteristics of SW26010 processors, we analyse the storage space requirements, memory access characteristics, and hotspot functions of the LZMA algorithm and implement the thread-level parallelism of the LZMA algorithm based on Athread interface. Furthermore, we make a fine-grained layout of LDM address space to achieve DMA double buffer cyclic sliding window algorithm, which optimizes the performance of SW-LZMA. The experimental results show that compared with the serial baseline implementation of LZMA, the parallel LZMA algorithm obtains a maximum speedup ratio of 4.1 times using the Silesia corpus benchmark, while on the large-scale data set, speedup is 5.3 times.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of A Hybrid Compression Algorithm for High-fidelity Synchro-waveform Measurements;2023 IEEE International Conference on Energy Technologies for Future Grids (ETFG);2023-12-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3