A Bayesian Neural Network-Based Method to Calibrate Microscopic Traffic Simulators

Author:

Chen Qinqin1ORCID,Ni Anning1ORCID,Zhang Chunqin2,Wang Jinghui1,Xiao Guangnian3,Yu Cenxin1ORCID

Affiliation:

1. Department of Transportation Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China

3. School of Economics & Management, Shanghai Maritime University, Shanghai 201306, China

Abstract

Calibrating the microsimulation model is essential to enhance its ability to capture reality. The paper proposes a Bayesian neural network (BNN)-based method to calibrate parameters of microscopic traffic simulators, which reduces repeated running of simulations in the calibration and thus significantly improves the calibration efficiency. We use BNN with probability distributions on the weights to quickly predict the simulation results according to the inputs of the parameters to be calibrated. Based on the BNN model with the best performance, heuristic algorithms (HAs) are performed to seek the optimal values of the parameters to be calibrated with the minimum difference between the predicted results of BNN and the field-measured values. Three HAs are considered, including genetic algorithm (GA), evolutionary strategy (ES), and bat algorithm (BA). A TransModeler case of highway links in Shanghai, China, indicates the validity of the proposed calibration method in terms of error and efficiency. The results demonstrate that the BNN model is able to accurately predict the simulation and adequately capture the uncertainty of the simulation. We also find that the BNN-BA model produces the best calibration efficiency, while the BNN-ES model offers the best performance in calibration accuracy.

Funder

Project of Shanghai Science and Technology Innovation Action Plan

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3