Theoretical Study and Experiment Validation on Drilling Cutting Weight during the Whole Process of Drilling

Author:

Wang Z. H.12,Tan J.3ORCID,Tan Y. L.12ORCID,Wu Y. H.2

Affiliation:

1. State Key Laboratory of Mining Disaster Prevention and Control Cofounded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao Shandong 266590, China

2. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao Shandong 266590, China

3. China University of Petroleum, Qingdao Shandong 266580, China

Abstract

In mining engineering, coal and gas outburst is extremely dangerous dynamic disaster, which will cause serious casualties and property losses. As a method to predict coal burst, the drilling cutting method has been widely used in coal mines. The drilling cutting weight is an important index of the drilling cutting method. In theoretical calculation, scholars usually assume that the coal is isotropic and homogeneous before drilling to deduce the formula of drilling cutting weight. However, in actual mining engineering, drilling cutting is usually carried out in the plastic coal body in front of the working face. Therefore, in the present study, the theoretical formula of the drilling cutting weight in the plastic coal mass is deduced, as well as in the elastic coal mass. The results show that the drilling cutting weight calculated based on the deduced formula increases with the increase of drilling depth in the plastic coal mass, which is consistent with the field measurement results. The fragmentation degrees of coal around the drilling hole are also considered by introducing cohesion, which changes linearly along the radial direction of the drilling hole. The results show that the smaller the cohesion, the greater the drilling cutting weight. The calculation formula for drilling cutting in elastic coal mass is also given. The dilatancy effect of coal around the drilling hole is also considered by introducing expansion coefficient n, which changes linearly along the radial direction of the drilling hole. There is a good match between the theoretical calculation results and the laboratory test results. The obtained results are helpful for the prediction and prevention of coal burst.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Risk Prediction of Coal and Gas Outburst in Deep Coal Mines Based on the SAPSO-ELM Algorithm;International Journal of Environmental Research and Public Health;2022-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3