Order Spectrum Analysis for Bearing Fault Detection via Joint Application of Synchrosqueezing Transform and Multiscale Chirplet Path Pursuit

Author:

Luo Jiesi1ORCID,Zhang Shaohui1,Zhong Mingen1,Lin Zusheng1

Affiliation:

1. School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China

Abstract

Order tracking has become one of the most effective methods for fault detection of rotating machinery under the time-varying shaft speed conditions. The transient phase estimation is very important for order tracking, especially when the tachometer installation is not convenient. The transient phase is usually obtained by integrating the instantaneous frequency (IF), so the IF estimation has attracted a great deal of concerns. This article describes a new IF estimation method based on the joint application of the synchrosqueezing transform (SST) and the multiscale chirplet path pursuit (MSCPP) method. The SST method as its high frequency resolution merits is used to estimate the frequency parameters for the parameter settings of the MSCPP method, that will resolve the high computation problem of the MSCPP method to a certain degree, so as to extensively use the high accuracy of the MSCPP method in IF estimation. The order spectrum based on the estimated IF can provide the demodulation information for the bearing fault diagnosis. The performance of the proposed method has been validated by both simulation and experimental data.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3