Reduced Numbers and Impaired Function of Regulatory T Cells in Peripheral Blood of Ischemic Stroke Patients

Author:

Ruhnau Johanna1,Schulze Juliane1,von Sarnowski Bettina1,Heinrich Marie1,Langner Sönke2,Pötschke Christian3ORCID,Wilden Anika1,Kessler Christof1,Bröker Barbara M.3,Vogelgesang Antje1ORCID,Dressel Alexander1ORCID

Affiliation:

1. Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany

2. Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany

3. Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany

Abstract

Background and Purpose. Regulatory T cells (Tregs) have been suggested to modulate stroke-induced immune responses. However, analyses of Tregs in patients and in experimental stroke have yielded contradictory findings. We performed the current study to assess the regulation and function of Tregs in peripheral blood of stroke patients. Age dependent expression of CD39 on Tregs was quantified in mice and men. Methods. Total FoxP3+ Tregs and CD39+FoxP3+ Tregs were quantified by flow cytometry in controls and stroke patients on admission and on days 1, 3, 5, and 7 thereafter. Treg function was assessed by quantifying the inhibition of activation-induced expression of CD69 and CD154 on T effector cells (Teffs). Results. Total Tregs accounted for 5.0% of CD4+ T cells in controls and <2.8% in stroke patients on admission. They remained below control values until day 7. CD39+ Tregs were most strongly reduced in stroke patients. On day 3 the Treg-mediated inhibition of CD154 upregulation on CD4+ Teff was impaired in stroke patients. CD39 expression on Treg increased with age in peripheral blood of mice and men. Conclusion. We demonstrate a loss of active FoxP3+CD39+ Tregs from stroke patient’s peripheral blood. The suppressive Treg function of remaining Tregs is impaired after stroke.

Funder

Seventh Framework Programme

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3