A New Method on Construction of Brain Effective Connectivity Based on Functional Magnetic Resonance Imaging

Author:

Zhang Jincan1ORCID,Yang Wenya2ORCID,Nan Jiaofen2ORCID

Affiliation:

1. School of Management Engineering, Zhengzhou University, Zhengzhou 450000, China

2. School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China

Abstract

Most of the existing methods about the causal relationship based on functional magnetic resonance imaging (fMRI) data are either the hypothesis-driven methods or based on a linear model, which can result in the deviation for detecting the original brain activity. Therefore, it is necessary to develop a new method for detecting the effective connectivity (EC) of the brain activity by the nonlinear calculation. In this study, we firstly proposed a new technology evaluating effective connectivity of the human brain based on back-propagation neural network with nonlinear model, named EC-BP. Next, we simulated four time series for assessing the feasibility and accuracy of EC-BP compared to Granger causality analysis (GCA). Finally, the proposed EC-BP was applied to the brain fMRI from 60 healthy subjects. The results from the four simulated time series showed that the proposed EC-BP can detect the originally causal relationship, consistent with the actual causality. However, the GCA can not find nonlinear causality. Based on the analysis of the fMRI data from the healthy participants, EC-BP and GCA showed the huge differences in the top 50 connections in descending order of EC. EC-BP showed all ECs related to hippocampus and parahippocampus, whereas GCA showed most ECs related to the paracentral lobule, caudate, putamen, and pallidum, which represents the brain regions with most frequent information passing measured by different methods. The proposed EC-BP method can provide supplementary information to GCA, which will promote more comprehensive detection and evaluation of brain EC.

Funder

Henan Key Laboratory of Food Safety Data Intelligence

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3