High-Betweenness Proteins in the Yeast Protein Interaction Network

Author:

Joy Maliackal Poulo1,Brock Amy1,Ingber Donald E.1,Huang Sui1

Affiliation:

1. Vascular Biology Program, Departments of Surgery and Pathology, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA

Abstract

Structural features found in biomolecular networks that are absent in random networks produced by simple algorithms can provide insight into the function and evolution of cell regulatory networks. Here we analyze “betweenness” of network nodes, a graph theoretical centrality measure, in the yeast protein interaction network. Proteins that have high betweenness, but low connectivity (degree), were found to be abundant in the yeast proteome. This finding is not explained by algorithms proposed to explain the scale-free property of protein interaction networks, where low-connectivity proteins also have low betweenness. These data suggest the existence of some modular organization of the network, and that the high-betweenness, low-connectivity proteins may act as important links between these modules. We found that proteins with high betweenness are more likely to be essential and that evolutionary age of proteins is positively correlated with betweenness. By comparing different models of genome evolution that generate scale-free networks, we show that rewiring of interactions via mutation is an important factor in the production of such proteins. The evolutionary and functional significance of these observations are discussed.

Funder

Air Force Office of Scientific Research

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Genetics,Molecular Biology,Molecular Medicine,General Medicine,Biotechnology

Cited by 373 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3