Experimental Characterisation of the Interfacial Structure during Counter-Current Flow Limitation in a Model of the Hot Leg of a PWR

Author:

Vallée Christophe1,Nariai Toshifumi2,Futatsugi Takashi2,Tomiyama Akio2,Lucas Dirk1,Murase Michio3

Affiliation:

1. Institute of Safety Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01314 Dresden, Germany

2. Graduate School of Engineering, Kobe University, Nada-ku, Kobe-shi, Hyogo 657-8501, Japan

3. Institute of Nuclear Technology, Institute of Nuclear Safety System, Inc. (INSS), Mihama-cho, Mikata-gun, Fukui 919-1205, Japan

Abstract

In order to investigate the two-phase flow behaviour during counter-current flow limitation in the hot leg of a pressurised water reactor, dedicated experiments were performed in a scaled down model ofKobe University. The experiments were performed with air and water at atmospheric pressure and room temperature. At high flow rates, CCFL occurs and the discharge of water to the reactor pressure vessel simulator is limited by the formation of slugs carrying liquid back to the steam generator. The structure of the interface was observed from the side of the channel test section using a high-speed video camera. An algorithm was developed to recognise the stratified interface in the camera frames after background subtraction. This method allows extracting the water level at any position in the image as well as performing further statistical treatments. The evolution of the interfacial structure along the horizontal part of the hot leg is shown by the visualisation of the probability distribution of the water level and analysed in function of the liquid and gas flow rates. The data achieved are useful for the analysis of the flow conditions as well as for the validation of modelling approaches like computational fluid dynamics.

Funder

German Academic Exchange Service

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3