Design Optimization and Burst Speed Prediction of a Ti2AlNb Blisk

Author:

Guo Yue1,Liu Yi-xiong1ORCID,Wu Yun-wu1,Cao Hang1,Mo Da1

Affiliation:

1. AECC Shenyang Engine Research Institute, Shenyang 110015, China

Abstract

The increasing demand for power, fuel efficiency, and safety of aeroengines has called for weight reduction and structural integrity examination of the critical components. This paper is aimed at performing a systematic investigation on the design of a high-speed Ti2AlNb blisk, including disc geometry optimization and burst speed prediction. Incorporating the design of the experimental approach and the commercial software has guaranteed that the optimization could be accomplished. Six key parameters were defined as variables with regard to the geometric dimensions whereas the safety factors were set as constraints to make the disc feasible. Sensitivity analysis has been conducted to study the effects of the variables on the safety factors and disc weight. Bore width, web width, and bore angle are identified to be the dominant factors regarding optimization. Results reveal that the bore width and web width are positively related to the safety factors at the cost of increasing the disc weight. On the contrary, the effects of the bore angle show the opposite trend. Finally, the achieved minimum disc weight is 15.2 kg with all the safety factors meeting the requirements. Upon completing the disc shape optimization, the burst speed was estimated using three elaborated methods. The comparisons between the numerical results and the experimental results indicate that the mean stress method is accurate when the correction coefficient is chosen properly. The local stress and strain method and the global plastic instability method also offer a precise prediction on the burst speed with errors of less than 5%. It could also be concluded that the predicted web failure in the radial direction of the disc is in good agreement with the experimental results.

Funder

AECC Shenyang Engine Research Institute

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Reference28 articles.

1. The application of blisk structure on foreign engines;C. Guang;Aeroengine,1999

2. Minimum weight design of aero engine turbine disks;L. Kasina

3. Multidisciplinary Design Optimization of Turbine Disks Based on ANSYS Workbench Platforms

4. Apply multi-objective cost and weight optimization to the initial design of turbine disks;A. R. Rao;Journal of Mechanical Design,2007

5. Structure optimum design techniques for multi-web fan disk based on ANSYS;L. W. Li;Journal of Aerospace Power,2011

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3