An Efficient Algorithm for the Detection of Outliers in Mislabeled Omics Data

Author:

Sun Hongwei12ORCID,Wang Jiu1,Zhang Zhongwen1,Hu Naibao1,Wang Tong2ORCID

Affiliation:

1. Department of Health Statistics, School of Public Health and Management, Binzhou Medical University, Yantai City, Shandong 264003, China

2. Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi 030001, China

Abstract

High dimensionality and noise have made it difficult to detect related biomarkers in omics data. Through previous study, penalized maximum trimmed likelihood estimation is effective in identifying mislabeled samples in high-dimensional data with mislabeled error. However, the algorithm commonly used in these studies is the concentration step (C-step), and the C-step algorithm that is applied to robust penalized regression does not ensure that the criterion function is gradually optimized iteratively, because the regularized parameters change during the iteration. This makes the C-step algorithm runs very slowly, especially when dealing with high-dimensional omics data. The AR-Cstep (C-step combined with an acceptance-rejection scheme) algorithm is proposed. In simulation experiments, the AR-Cstep algorithm converged faster (the average computation time was only 2% of that of the C-step algorithm) and was more accurate in terms of variable selection and outlier identification than the C-step algorithm. The two algorithms were further compared on triple negative breast cancer (TNBC) RNA-seq data. AR-Cstep can solve the problem of the C-step not converging and ensures that the iterative process is in the direction that improves criterion function. As an improvement of the C-step algorithm, the AR-Cstep algorithm can be extended to other robust models with regularized parameters.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3