Dynamic Programming Structure Learning Algorithm of Bayesian Network Integrating MWST and Improved MMPC

Author:

Di Ruo-Hai12,Li Ye2,Li Ting-Peng1,Wang Lian-Dong1,Wang Peng2ORCID

Affiliation:

1. State Key Laboratory of Complex Electromagnetic Environment Effects on Electronic and Information System(CEMEE), Luoyang 471003, China

2. School of Electronics and Information Engineering, Xi’an Technological University, Xi’an 710021, China

Abstract

Dynamic programming is difficult to apply to large-scale Bayesian network structure learning. In view of this, this article proposes a BN structure learning algorithm based on dynamic programming, which integrates improved MMPC (maximum-minimum parents and children) and MWST (maximum weight spanning tree). First, we use the maximum weight spanning tree to obtain the maximum number of parent nodes of the network node. Second, the MMPC algorithm is improved by the symmetric relationship to reduce false-positive nodes and obtain the set of candidate parent-child nodes. Finally, with the maximum number of parent nodes and the set of candidate parent nodes as constraints, we prune the parent graph of dynamic programming to reduce the number of scoring calculations and the complexity of the algorithm. Experiments have proved that when an appropriate significance level α is selected, the MMPCDP algorithm can greatly reduce the number of scoring calculations and running time while ensuring its accuracy.

Funder

National Key Laboratory Fund

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3