The Relationship between the Structure and Thermal Properties of Bi2O3-ZnO-B2O3 Glass System

Author:

Lan Sung-Hung1ORCID,Lee Chin-Tung2,Lai Yi-Sheng12,Chen Chien-Chon1,Yang Hsi-Wen12ORCID

Affiliation:

1. Ph. D. Program in Materials and Chemical Engineering, National United University, 2, Lienda, Miaoli 360001, Taiwan

2. Department of Materials Science and Engineering, National United University, 2, Lienda, Miaoli 360001, Taiwan

Abstract

The influence of Bi2O3 and melting temperature on the thermal and structural properties of xBi2O3-(60-x) ZnO-40B2O3 glasses has been investigated in this study. It is expected that these factors can be used to control the degree of reduction of Bi2O3, and the relationship between these factors and the color change of the process for bismuth glass is discussed. Due to high-temperature melting, the bismuth-doped borate glasses have changed into dark/black from original transparent yellow and the light transmittance will decrease, so it is not used in optical applications. The thermal properties of glass are measured by a thermomechanical analyzer (TMA), and the glass structure is analyzed by FTIR and XPS. The results show that the glass is mainly composed of [BiO6] octahedron, [BiO3] triangle, [BO4] tetrahedron, and triangle [BO3] units, and the network of the glass system is mainly bonded by B-O-B, B-O-Zn, B-O-Bi, and Bi-O-Bi. The glass thermal expansion coefficient (CTE) of this glass system increases with the increase of Bi2O3 content, and the O1s nuclear electron binding energy shifts to the lower energy direction with the increase of Bi2O3 addition. In terms of FTIR, as the melting temperature rises, the B-O-B bonding vibration concentration of [BO4] inside the borate glass decreases, and the density of B-O-B bonding vibration of [BO3] increases, Moreover, the increase in melting temperature increases the probability of reducing Bi ions to Bi0, reduces the bonding of Bi-O-B, and increases the bonding of B-O-B, and the CTE also slightly decreases.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Hindawi Limited

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3