A Novel Guidance Law for Intercepting a Highly Maneuvering Target

Author:

Wu Gang1ORCID,Zhang Ke1

Affiliation:

1. School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Given the resolution of the guidance for intercepting highly maneuvering targets, a novel finite-time convergent guidance law is proposed, which takes the following conditions into consideration, including the impact angle constraint, the guidance command input saturation constraint, and the autopilot second-order dynamic characteristics. Firstly, based on the nonsingular terminal sliding mode control theory, a finite-time convergent nonsingular terminal sliding mode surface is designed. On the back of the backstepping control method, the virtual control law appears. A nonlinear first-order filter is constructed so as to address the “differential expansion” problem in traditional backstepping control. By designing an adaptive auxiliary system, the guidance command input saturation problem is dealt with. The RBF neural network disturbance observer is used for estimating the unknown boundary external disturbances of the guidance system caused by the target acceleration. The parameters of the RBF neural network are adjusted online in real time, for the purpose of improving the estimation accuracy of the RBF neural network disturbance observer and accelerating its convergence characteristics. At the same time, an adaptive law is designed to compensate the estimation error of the RBF neural network disturbance observer. Then, the Lyapunov stability theory is used to prove the finite-time stability of the guidance law. Finally, numerical simulations verify the effectiveness and superiority of the proposed guidance law.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3