Time-Frequency Analysis of EEG Signals and GLCM Features for Depth of Anesthesia Monitoring

Author:

Mousavi Seyed Mortaza1ORCID,Asgharzadeh-Bonab Akbar2ORCID,Ranjbarzadeh Ramin3ORCID

Affiliation:

1. Department of Biomedical Engineering, Urmia Medical Sciences University, Urmia, Iran

2. Department of Electrical and Computer Engineering, Urmia University, Urmia, Iran

3. Department of Telecommunications Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran

Abstract

One of the important tasks in the operating room is monitoring the depth of anesthesia (DoA) during surgery, and noninvasive techniques are very popular. Hence, we propose a new scheme for DoA monitoring considering the time-frequency analysis of electroencephalography (EEG) signals and GLCM features extracted from them. To this end, at first, the time-frequency map (TFM) of each channel of each EEG is computed by smoothed pseudo-Wigner–Ville distribution (SPWVD), where the EEG signal used in this paper is recorded in 15 channels. After that, we consider the gray-level co-occurrence matrix (GLCM) to obtain the content of TFM, and after that, four features such as homogeneity, correlation, energy, and contrast are obtained for each GLCM. Finally, after the selection of efficient features using the minimum redundancy maximum relevance (MRMR) method, the K-nearest neighbor (KNN) classifier is utilized to determine the DoA. Here, we consider the three states, namely, deep hypnotic, surgical anesthesia, and sedation and awake states according to bispectral index (BIS), and each EEG epoch is classified to these states. We also employ data augmentation to enhance the training phase and increase accuracy. We obtain the accuracy and confusion matrix of the proposed method. We also analyze the effects of a number of gray levels of GLCM, distance measure in KNN classifier, and parameters of data augmentation on the performance of the proposed method. Results indicate the efficiency of the proposed method to determine the DoA during surgery.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3