Diagnosis of Schizophrenia Based on Deep Learning Using fMRI

Author:

Zheng JinChi1ORCID,Wei XiaoLan2,Wang JinYi1,Lin HuaSong3ORCID,Pan HongRun4,Shi YuQing4

Affiliation:

1. Quanzhou Third Hospital, Quanzhou 362000, China

2. Quanzhou First Hospital Affiliated to Fujian Medical University Neurology Department, Fujian, China

3. The Second Affiliated Hospital of Fujian Medical University Neurology Department, Fujian, China

4. Jinjiang Third Hospital, Quanzhou 362000, China

Abstract

Schizophrenia is a brain disease that frequently occurs in young people. Early diagnosis and treatment can reduce family burdens and reduce social costs. There is no objective evaluation index for schizophrenia. In order to improve the classification effect of traditional classification methods on magnetic resonance data, a method of classification of functional magnetic resonance imaging data is proposed in conjunction with the convolutional neural network algorithm. We take functional magnetic resonance imaging (fMRI) data for schizophrenia as an example, to extract effective time series from preprocessed fMRI data, and perform correlation analysis on regions of interest, using transfer learning and VGG16 net, and the functional connection between schizophrenia and healthy controls is classified. Experimental results show that the classification accuracy of fMRI based on VGG16 is up to 84.3%. On the one hand, it can improve the early diagnosis of schizophrenia, and on the other hand, it can solve the classification problem of small samples and high-dimensional data and effectively improve the generalization ability of deep learning models.

Funder

Science Foundation of Quanzhou

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3