Clinical Evaluation of FOXO1 as a Tumor Suppressor in Prostate Cancer

Author:

Yang Ning1,Wu Jiawen1,Zhang Tiancheng2,Yang Fan1,Shao Jinyan3ORCID,He Chang1ORCID,Qin Liang1ORCID

Affiliation:

1. Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai 201199, China

2. Medical College of Soochow University, Soochow University, 199 Renai Road, Suzhou 215123, China

3. Department of Emergency, Minhang Hospital, Fudan University, China

Abstract

Objective. Prostate cancer (PCa) is considered the most serious cancer in the world. Nevertheless, the accuracy of current biomarkers, such as pathological staging, Gleason’s score, and serum prostate-specific antigen (PSA) levels, is limited. FOXO1 is a key downstream effector of PTEN and a tumor suppressor in PCA, which has been reported extensively. However, the clinical relevance of FOXO1 in PCa remains unclear. Methods. In this study, we first detected its expression in four public databases to explore the clinical role of FOXO1. Verification of the knockdown effect of FOXO1 siRNA was performed by real-time PCR analysis. Changes in cell viability were assessed using cell counting kit-8 (CCK-8) assays. In addition, we verified the effect of FOXO1 on the PCa cell cycle using a cell cycle assay. Results. Herein, we found that FOXO1 was significantly downregulated in PCa tissues and was significantly associated with Gleason’s score, age, biochemical recurrence (BCR), and lymph node (LN) status, while FOXO1 expression was independent of pathological staging and preoperative PSA levels. The Kaplan-Meier survival analysis showed that PCA patients with high FOXO1 expression were less likely to develop BCR compared with patients with low FOXO1 expression. In terms of function, FOXO1 inhibition significantly promoted the proliferation and cell cycle progression of PCa cells. Conclusions. In summary, our study suggests that FOXO1 may be one of the prognostic factors that describe the risk of PCa for BCR. These results suggest that FOXO1 may be a therapeutic target for PCa.

Funder

Natural Science Foundation of Minhang District Science and Technology Commission

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3