Strain Prediction of Grain in Solid Rocket Motor under the Pressure Curing Molding Technology

Author:

Zhang Kaining1ORCID,Wang Chunguang12ORCID,Li Qun1,Guo Zhenyu3

Affiliation:

1. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. Lingkong Tianxing Technology Co., Ltd., Beijing 100176, China

3. Academy of Aerospace Solid Propulsion Technology, Xi’an 710025, China

Abstract

The residual strain generated in grains during the propellant manufacturing process can significantly impact the safety and stability of solid rocket motors. Pressure curing molding technology has been employed as an effective approach to mitigate residual strain. This research paper focuses on deriving a strain prediction function for grains based on continuum mechanics, taking into account the influence of pressure curing molding technology. The accuracy of the prediction function is verified through finite element analysis. The results show that the proposed function accurately predicts strain distribution at critical positions within the grains. And the effects of curing pressure and the elastic modulus of the case on residual strain are analysed. Specifically, for a given material of case, an optimal curing pressure is identified that minimizes residual strain in the grains. Moreover, it is observed that materials with lower hoop elastic modulus, such as composites, tend to require lower optimal curing pressures. The outcomes of this study provide valuable guidance for grain shape design and the selection of optimal curing pressure.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3