Study on Passive and Semiactive Control Systems in Structures under Near- and Far-Field Earthquakes

Author:

Zamanian Mohammadreza1,Kheyroddin Ali2ORCID,Mortezaei Alireza1ORCID

Affiliation:

1. Department of Civil Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran

2. School of Civil Engineering, College of Engineering, University of Semnan, Semnan, Iran

Abstract

The construction demand for irregular structures is increasing due to the population growth of cities, limited construction areas, and the aesthetics of structures. Lack of proper understanding on the dynamic behavior of these structures during seismic events can lead to local and global failures on them. In order to investigate this issue, we used a regular 10-story structure with three different stiffness irregularity cases along the elevation. Irregularities are considered in three positions: the lower half of the structure height, the lowest story, and the middle story. In this study, to reduce the damage and mitigate the seismic response of the structure, three control systems are proposed including a magnetorheological (MR) damper with semiactive fuzzy controller as the semiactive control system, a Tuned Mass Damper (TMD) as the passive control system, and the simultaneous use of them. Based on the numerical analyses under near- and far-field ground motions, the residual plastic deformations are significantly reduced by the simultaneous use of MR damper and TMD, while each of these dampers alone performs poorly in some cases. The results show that if these two dampers are used together, a more promising control system with robust performance against changes in system parameters can be achieved.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3