Dynamics Analysis of the Rigid-Flexible Coupling Lifting Comprehensive Mechanism for a Rotary Dobby

Author:

Wei Xiaoyong123,Jin Guoguang12ORCID,Wei Zhan12,Chang Boyan12,Song Yanyan12

Affiliation:

1. School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387, China

2. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387, China

3. School of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, Jiangsu, China

Abstract

This paper addresses the problem of dynamics analysis of the rigid-flexible coupling lifting comprehensive mechanism for a rotary dobby, which is the important part of the loom. To provide a physical model basis for a precise dynamics model, the finite element method was used to discretize the bending arm of the rotary dobby effectively. Combining with the modal synthesis techniques, the dynamic model of the bending arm was established by using Kane’s formulation, and it laid a foundation for analyzing the dynamic performance of the heald frame. By comparing virtual prototype simulation results with the numerical calculation results of the bending arm, the correctness of this model was verified. Based on the established dynamic model, the modal truncation method is used to simplify the dynamic model; in addition, the influence of parameters such as the speed of the dobby, the warp tension, the movement distance of the heald frame, and the thickness of the bending arm on the dynamic characteristics of the heald frame was analyzed. Last, the sensitivity analysis (SA) method is used to analyze the effects of each parameter. The results show that it is appropriate to select the first four modes to calculate, and increasing the speed greatly or increasing the warp tension, the shedding performance is obviously worse, while the shedding performance of the loom can be optimized by reducing the shedding range or increasing the thickness of the bending arm.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hub Angle Control of Double Link Flexible Robotic Arm Manipulator Using PID Controller Tuned by Bacterial Foraging Optimization Algorithm;2023 13th International Conference on Power, Energy and Electrical Engineering (CPEEE);2023-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3