Sorption Mechanisms and Enhancement of Selected Organochlorine Pollutants in Water on Zeolites

Author:

Manda Timothy1ORCID,Omwoma Solomon1ORCID,Barasa Godfrey Okumu1ORCID,Pembere Anthony M.1ORCID,Sifuna Douglas1ORCID,Ochilo Livingstone1ORCID,Lagat Silas1ORCID,Ngeno Emily2ORCID,Ssebugere Patrick345ORCID,Nagawa Christine Betty6ORCID,Kyarimpa Christine7ORCID

Affiliation:

1. Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo (Main) Campus, P.O. Box 210-40601, Bondo, Kenya

2. Department of Physical Sciences, Kaimosi Friends University, P.O. Box 385–50309, Kaimosi, Kenya

3. Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda

4. Department of Cell Toxicology, Helmholtz Centre for Environmental Research−UFZ, D-04318 Leipzig, Germany

5. Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research−UFZ, D-04318 Leipzig, Germany

6. Department of Forestry, Bio-Diversity and Tourism, Makerere University, P.O. Box 7062, Kampala, Uganda

7. Department of Chemistry, Kyambogo University, P.O. Box 1, Kyambogo, Uganda

Abstract

This study investigates the adsorption capacities of selected organochlorines on zeolites, focusing on hexachlorobenzene (HCB), hexachlorotetradecane (HCTD), hexachlorodecane (HCD), hexachlorocyclohexane (HCH), heptachlorodecane (HPCD), octachlorodecane (OCD), dichlorodiphenyltrichloroethane (DDT), and octachlorotetradecane (OCTD). The structures of the organochlorines were optimized and their Frontier molecular orbitals were calculated. The analysis of HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energies provided insights into the molecules’ electron-donating and -accepting capabilities. The present research identified the universal force field as suitable for the investigation and used it to evaluate the adsorption capacities of the pollutants on various zeolites. It was found that CLO (a cubic microporous gallophosphate) demonstrated the highest adsorption capacity for HCB among 245 zeolites, with a loading capacity of 65.84 wt%. In terms of molecules adsorbed per cell, CLO remained the highest with 120 molecules per cell for HCB, 113 molecules per cell for HCH, 43 molecules per cell for DDT, 21 molecules per cell for HCTD, 19 molecules per cell for OCTD, 47 molecules per cell for HCD, 30 molecules per cell for HPCD, and 22 molecules per cell for OCD. The analysis revealed correlations between the structural parameters of zeolites (mass, density, HVF, APV, VSA, GSA, DPS, and Di) and their adsorption capacities. The investigation delved into cluster models to understand the interaction of organochlorines with the zeolite framework. The study explored the impact of doping CLO zeolite with different atoms (Al, Si, and Na) on adsorption capacity. The results showed that doping with aluminum improved both loading capacity and adsorption energy and dissociate the chlorinated compounds during adsorption. Quantum chemical calculations show that hydrogen-based bonding of the organochlorides on the CLO is thermodynamically favorable compared to dissociative adsorption. In addition, oxygen atoms in the zeolites provide active adsorption sites. In the present work, laboratory adsorption experiments were performed, treating zeolites with heat at 400°C. Surprisingly, untreated zeolites outperformed treated ones, adsorbing up to 91% of HCB, while treated zeolites reached saturation after the third run. The study attributed the better performance of untreated zeolites to the presence of interstitial water and hydrogen atoms, which are critical for electrostatic interactions with organic compounds. In general, this research provides a comprehensive analysis of the adsorption capacities of organochlorines on zeolites, combining computational simulations and laboratory experiments. This work’s distinctive quality is its methodology that combines molecular simulations, experimental verification, doping, and interstitial water effects. The findings emphasize the importance of zeolite (a high-porosity nanostructured material) structure, composition, and treatment methods in determining their effectiveness as adsorbents for environmental pollutants.

Funder

Austrian Partnership Programme in Higher Education and Research

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3