Intonation Characteristics of Singing Based on Artificial Intelligence Technology and Its Application in Song-on-Demand Scoring System

Author:

Wei E.1ORCID

Affiliation:

1. School of Music, Shenyang Normal University, Shenyang, Liaoning 110034, China

Abstract

With the continuous progress of my country’s cultural industry, how to apply artificial intelligence technology to song on demand has become an issue of concern. This research mainly discusses the research of singing intonation characteristics based on artificial intelligence technology and its application in song-on-demand scoring system. This paper uses the combination of ant colony algorithm and DTW algorithm to measure the similarity between speech signals with the average distortion distance, so as to expect accurate recognition results. The design of the song-on-demand scoring function module uses a combination of MVC mode and command mode based on artificial intelligence technology. The view component in the MVC mode is mainly used to display the content that the user needs to sing and realize the interaction with the user. The singer selects a song to start playing, and the scoring terminal device queries the music library server for song information according to the song number, then starts playing the song through the FTP file sharing service according to the audio file path in the song information, and at the same time displays the song on the display according to the timeline Show song and pitch information. The singer sings according to the screen prompts. The microphone collects the voice signal and transmits it to the scoring terminal. After the scoring algorithm is calculated, the result is fed back to the screen in real time. The singer can view his singing status in real time and make corresponding adjustments to obtain a higher score. After the singing, the scoring terminal will display the final result on the screen to inform the user and upload the singing record to the server for recording. In the tested on-demand retrieval engine, the average hit rate of the top 3 has reached more than 90% under various humming methods, basically maintaining the high hit rate characteristics of the original retrieval engine. The system designed in this research helps to effectively improve the singing level.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3