Huang-Pu-Tong-Qiao Formula Ameliorates the Hippocampus Apoptosis in Diabetic Cognitive Dysfunction Mice by Activating CREB/BDNF/TrkB Signaling Pathway

Author:

Ye Shu123,Xie Dao-Jun4,Zhou Peng125,Gao Hua-Wu12,Zhang Meng-Ting12,Chen Da-Bao13,Qin Yun-Peng13,Lei Xin13,Li Xin-Quan13,Liu Juan13,Cheng Ya-Xun13,Yao Yong-Chuan4,Cai Biao125ORCID,Shen Guo-Ming123ORCID

Affiliation:

1. School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China

2. Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui Province, China

3. Graduate School of Anhui, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China

4. The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, Anhui Province, China

5. Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, Anhui Province, China

Abstract

Background. Huang-Pu-Tong-Qiao formula (HPTQ), a traditional Chinese medicine (TCM) formula used to improve cognitive impairment. However, the underlying neuroprotective mechanism of HPTQ treated for diabetic cognitive dysfunction (DCD) remains unclear. The purpose of this study was to investigate the neuroprotective mechanism of HPTQ in DCD mice based on molecular docking. Methods. To investigate the neuroprotective effect of HPTQ in DCD, the Morris water maze (MWM), novel object recognition (NOR) test was used to detect the learning and memory changes of mice; hematoxylin-eosin (HE) staining was used to investigate the damage of hippocampal neurons; the western blot (WB) was used to examine the level of brain-derived neurotrophic factor (BDNF) of hippocampus. To investigate the neuroprotective mechanism of HPTQ in DCD, molecular docking was used to predict the possible target proteins of different active components in HPTQ and then the WB was used to verify the expression of key target proteins in the hippocampus of mice. Results. HPTQ improved the learning and memory ability, hippocampal neuron damage, and the level of BDNF in the hippocampus of the DCD model treated with HFD/STZ for 12 weeks. Besides, the results of molecular docking showed that the main chemical components of HPTQ could be well combined with the targets of Bcl-2-associated X (Bax) and B-cell lymphoma2 (Bcl-2) and caspase-3. The levels of Bax/Bcl-2 protein ratio and caspase-3 increased in the DCD model while the HPTQ inhibited it. In addition, HPTQ restored DCD-induced decline of p-CREB, BDNF, TrkB, and p-Akt in the hippocampus. Conclusions. These data indicated that HPTQ ameliorates the hippocampus apoptosis in diabetic cognitive dysfunction mice by activating CREB/BDNF/TrkB signaling pathway.

Funder

Major Research Project of Natural Sciences in Anhui Universities

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3