Shock Characteristics of the Opposed Disc Springs (ODS) Shock Isolator with Pretightening under Boundary Friction Condition

Author:

Hui An-Min1ORCID,Yan Ming1ORCID,Zhang Lei2ORCID,Jin Ying-Li1ORCID,Wang Kaiping1ORCID,Liu Haichao1ORCID

Affiliation:

1. College of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China

2. Naval Research Academy, Beijing 100161, China

Abstract

In this study, to solve the problems of shock environment and shock isolation, about which there is still a lack of reasonable description, an isokinetic shock distinguishing method (ISDM), which can quantitatively distinguish between shock and forced vibration state, is presented. And the shock isolation performance of an opposed disc springs (ODS) shock isolator with pretightening under boundary friction condition is investigated. The static and dynamic stiffness properties of the ODS shock isolator are discussed. Relying on ISDM, a shock dynamic model of the ODS shock isolator with pretightening under boundary friction condition is established. The average method is adopted to solve the model theoretically. The shock acceleration ratio (SAR), shock displacement ratio (SDR), and relative displacement ratio (RDR) of the model are calculated using the numerical method and verified by experiments. Both numerical and experimental results show that ISDM is effective. And the effects on isolation efficiency of the number of disc springs, additional supporting force, pretightening force, load, and the shock velocity constant of the ODS shock isolator are discussed, which provide guidelines for its further practical application.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental, numerical, and theoretical analysis of tapered belleville spring;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-07-29

2. Influence of fractal-based contact friction coefficient on the stiffness of disc springs: Experimental and numerical studies;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-05-10

3. Performance of a shock isolator inspired by skeletal muscles;International Journal of Mechanical Sciences;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3