Generative Adversarial Network-Based Edge-Preserving Superresolution Reconstruction of Infrared Images

Author:

Zhao Yuqing1ORCID,Fu Guangyuan1,Wang Hongqiao1,Zhang Shaolei1,Yue Min1

Affiliation:

1. Xi’an Research Institute of High-Tech, Shaanxi 710025, China

Abstract

The convolutional neural network has achieved good results in the superresolution reconstruction of single-frame images. However, due to the shortcomings of infrared images such as lack of details, poor contrast, and blurred edges, superresolution reconstruction of infrared images that preserves the edge structure and better visual quality is still challenging. Aiming at the problems of low resolution and unclear edges of infrared images, this work proposes a two-stage generative adversarial network model to reconstruct realistic superresolution images from four times downsampled infrared images. In the first stage of the generative adversarial network, it focuses on recovering the overall contour information of the image to obtain clear image edges; the second stage of the generative adversarial network focuses on recovering the detailed feature information of the image and has a stronger ability to express details. The infrared image superresolution reconstruction method proposed in this work has highly realistic visual effects and good objective quality evaluation results.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Media Technology,Communication

Reference40 articles.

1. Infrared imaging system and applications;L. Xiang-di;Laser & Infrared,2014

2. Infrared super-resolution imaging based on compressed sensing

3. Infrared super-resolution imaging method based on retina micro-motion

4. An overview of computational photography;J. L. Suo;Science China(Information Sciences),2012

5. Learning a Deep Convolutional Network for Image Super-Resolution;D. Chao,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tunnel Lining Defect Identification Method Based on Small Sample Learning;Wireless Communications and Mobile Computing;2022-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3