Numerical Simulation Study of Pore-Throat Evolution of Upper Paleozoic in Ordos Basin, China

Author:

Cao Qing1ORCID,Chen Zhangxing2,Zhao JingZhou1,Dang Jiacheng1,Song Jiaxuan3ORCID,Chen Bin1

Affiliation:

1. Shaanxi Key Laboratory of Petroleum Accumulation Geology, Xi’an Shiyou University, Shaanxi 710065, China

2. Reservoir Simulation Group, Department of Chemical & Petroleum Engineering, University of Calgary, Alberta, T2N 1N4, Canada

3. Research Institute of Yanchang Petroleum (Group) Co., Ltd., Xi’an, 710065 Shaanxi, China

Abstract

The parameters of grain size, contents of silica, kaolinite, hydromica, calcite, and a geological time of tight sandstone reservoirs in Upper Paleozoic in Ordos basin were researched thoroughly, and the impact of the diagenetic evolution process of different sandstone types on porosity and throats was analyzed, based on the quantitative statistics from thin sections, measurements of porosity and permeability, and conventional and constant-rate mercury injection tests. We not only build the evolution of porosity through process-oriented numerical simulations during the geological time but also establish effect-oriented numerical simulations between porosity and different diagenesis parameters. Furthermore, we set up a fitting relationship between diagenetic factors and pore throats in different gas-bearing reservoirs. Differentiation results in the evolution of porosity and a pore-throat system of sandstone types have clear characteristics, such as lithic quartz sandstones of the He 8 Member in the Sulige area and quartz sandstones of the Shan 2 Member in the Yulin area. The fitting results show that the main factors influencing the evolution of porosity and a pore-throat system are grain size and siliceous cement, which can also be validated by the measured data on two gas-bearing intervals. The results are important to a deep understanding of the relationship between the reservoir continuing to experience porosity and permeability evolution and the timing of petroleum charging into the reservoir and can also be applied elsewhere as a quick means in high grading areas of risks during field development.

Funder

Basic research program of Natural Science in Shaanxi Province

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3