Study on Epoxy Resin-Modified Asphalt Binders with Improved Low-Temperature Performance

Author:

Luo Zhiqi1,Liu Tao2,Wu Yintan2,Yuan Hongwei1,Qian Guoping1ORCID,Meng Xiantao2,Cai Jun1ORCID

Affiliation:

1. Key Laboratory of Special Environment Road Engineering of Hunan Province, Changsha University of Science and Technology, Changsha 410114, Hunan, China

2. Shenzhen Yuetong Construction Engineering Co., Ltd., Shenzhen 518000, Guangdong, China

Abstract

Epoxy resin-modified asphalt binder (ERMAB) has been wildly used in the pavement of steel bridges, while the improvement on its low temperature is still a big challenge to researchers. This paper tries to improve the low-temperature performance of ERMAB by optimizing the modifier, epoxy resin. Firstly, three epoxy resins and three amine curing agents were prepared and used for the modification of asphalt binders. Secondly, the formula and prepared methods of ERMABs were optimized and determined through compatibility, viscosity growth rate, and tensile tests. Thirdly, an overall comparison on the phase structure, thermal stability, low-temperature performance, temperature and frequency dependence, and fatigue performance of prepared ERMABs and control sample were made. Results show that polyurethane-modified epoxy resin or dimer acid-modified epoxy resin, with a suitable curing agent, can significantly improve the low-temperature performance of ERMAB, and the curing time meets the construction requirements. Compared with the control sample, the two ERMABs have basically the same rheological properties at medium temperature, but slightly worse high-temperature performance and fatigue resistance. The significance of this paper lies in proposing a feasible way to improve the low-temperature performance of ERMAB.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3