Image Recognition of Crop Diseases and Insect Pests Based on Deep Learning

Author:

Xin Mingyuan1ORCID,Wang Yong2

Affiliation:

1. School of Computer and Information Engineering, Heihe University, Heihe, China

2. Institute of International Education, Heihe University, Heihe, China

Abstract

Deep learning algorithms have the advantages of clear structure and high accuracy in image recognition. Accurate identification of pests and diseases in crops can improve the pertinence of pest control in farmland, which is beneficial to agricultural production. This paper proposes a DCNN-G model based on deep learning and fusion of Google data analysis, using this model to train 640 data samples, and then using 5000 test samples for testing, selecting 80% as the training set and 20% as the test set, and compare the accuracy of the model with the conventional recognition model. Research results show that after degrading a quality level 1 image using the degradation parameters above, 9 quality level images are obtained. Use YOLO’s improved network, YOLO-V4, to test and validate images after quality level classification. Images of different quality levels, especially images of adjacent levels, are subjectively observed by human eyes, and it is difficult to distinguish the quality of the images. Using the algorithm model proposed in this article, the recognition accuracy is 95%, which is much higher than the basic 84% of the DCNN model. The quality level classification of crop disease and insect pest images can provide important prior information for the understanding of crop disease and insect pest images and can also provide a scientific basis for testing the imaging capabilities of sensors and objectively evaluating the image quality of crop diseases and pests. The use of convolutional neural networks to realize the classification of crop pest and disease image quality not only expands the application field of deep learning but also provides a new method for crop pest and disease image quality assessment.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3