Isogeometric Analysis for Active Control of Piezoelectric Functionally Graded Plates in Thermal Environment

Author:

Liu Tao123ORCID,Jiang Yafen4ORCID,Li Shujun1ORCID,Liu Qingyun12ORCID,Wang Chao2ORCID

Affiliation:

1. Anhui Province Key Laboratory of Special Heavy Load Robot, Ma’anshan, 243032, China

2. Department of Mechanical Engineering, Anhui University of Technology, Ma’anshan, 243002, China

3. Department of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China

4. Department of Innovative Education, Anhui University of Technology, Ma’anshan, 243002, China

Abstract

An isogeometric analysis (IGA) method is proposed for investigating the active shape and vibration control of functionally graded plates (FGPs) with surface-bonded piezoelectric materials in a thermal environment. A simple first-order shear deformation theory (S-FSDT) with four variables is used to describe the displacement field of the plates. To ensure the investigation of smart piezoelectric structure in the thermal environment closer to the actual situation, a modified piezoelectric constitutive equation with consideration of the temperature effect of dielectric and piezoelectric strain coefficients is implemented to replace the traditional linear piezoelectric constitutive equation. Meanwhile, the neutral surface is adopted to avoid the stretching-bending coupling. The accuracy and effectiveness of the proposed S-FSDT-based IGA method are verified by comparing with several existing numerical examples. Then, the static bending and open-loop control of the plates under mechanical and thermal loads are further studied. Finally, the active control including static bending control and vibration control of piezoelectric functionally graded plates (PFGPs) is also investigated by using a displacement-velocity feedback control law.

Funder

Anhui Science and Technology

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3