ANPrAod: Identify Antioxidant Proteins by Fusing Amino Acid Clustering Strategy and N -Peptide Combination

Author:

Xi Qilemuge1,Wang Hao1,Yi Liuxi2,Zhou Jian1,Liang Yuchao1,Zhao Xiaoqing3ORCID,Zuo Yongchun1ORCID

Affiliation:

1. State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China

2. Agronomy College, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010019, China

3. Biotechnology Research Centre, Inner Mongolia Academy of Agricultural and Animal Husbandry Science, Hohhot 010021, China

Abstract

Antioxidant proteins perform significant functions in disease control and delaying aging which can prevent free radicals from damaging organisms. Accurate identification of antioxidant proteins has important implications for the development of new drugs and the treatment of related diseases, as they play a critical role in the control or prevention of cancer and aging-related conditions. Since experimental identification techniques are time-consuming and expensive, many computational methods have been proposed to identify antioxidant proteins. Although the accuracy of these methods is acceptable, there are still some challenges. In this study, we developed a computational model called ANPrAod to identify antioxidant proteins based on a support vector machine. In order to eliminate potential redundant features and improve prediction accuracy, 673 amino acid reduction alphabets were calculated by us to find the optimal feature representation scheme. The final model could produce an overall accuracy of 87.53% with the ROC of 0.7266 in five-fold cross-validation, which was better than the existing methods. The results of the independent dataset also demonstrated the excellent robustness and reliability of ANPrAod, which could be a promising tool for antioxidant protein identification and contribute to hypothesis-driven experimental design.

Funder

Fund for Excellent Young Scholars of Inner Mongolia

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3