Transcriptome Profiles of the Liver in Two Cold-Exposed Sheep Breeds Revealed Different Mechanisms and Candidate Genes for Thermogenesis

Author:

Jiao Dan123ORCID,Ji Kaixi123ORCID,Wang Wenqiang4,Liu Hu4,Zhou Jianwei4,Degen A. Allan5,Zhang Yunsheng6,Zhou Ping7,Yang Guo13ORCID

Affiliation:

1. Northwest Institute of Ecological Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of Stress Physiology and Ecology, Northwest Institute of Ecological Environment and Resources, Chinese Academy of Science, Lanzhou 730000, Gansu, China

4. School of Life Sciences, Lanzhou University, Lanzhou 730020, China

5. Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of Negev, Beer Sheva 8410500, Israel

6. Institute of Animal Husbandry, Xinjiang Academy of Animal Science, Urumqi 830000, Xinjiang, China

7. State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China

Abstract

Cold-induced thermogenesis plays an important role in the survival of lambs exposed to low air temperatures. The liver produces and mediates heat production in mammals; however, to date, little is known about the role of liver genes in cold-induced thermogenesis in lambs. In this study, the difference in the liver transcriptome between Altay and Hu ewe lambs was compared. Because of different backgrounds of the two breeds, we hypothesized that the transcriptome profiles of the liver would differ between breeds when exposed to cold. Cold-exposed Altay lambs activated 8 candidate genes (ACTA1, MYH1, MYH2, MYL1, MYL2, TNNC1, TNNC2, and TNNT3) involved in muscle shivering thermogenesis; 3 candidate genes (ATP2A1, SLN, and CKM) involved in muscle nonshivering thermogenesis related to the Ca2+ signal and creatine cycle; and 6 candidate genes (PFKM, ALDOC, PGAM2, ENO2, ENO3, and ENO4) involved in enhancing liver metabolism. In contrast, the liver may not act as the main tissue for thermogenesis in cold-exposed Hu lambs. We concluded that Altay lambs rely on liver-mediated shivering and nonshivering thermogenesis by muscle tissue to a greater extent than Hu lambs. Results from this study could provide a theoretical foundation for the breeding and production of cold-resistant lambs.

Funder

Chinese Academy of Sciences

Publisher

Hindawi Limited

Subject

Genetics,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3