Matching Sensor Ontologies with Simulated Annealing Particle Swarm Optimization

Author:

Zhu Hai1ORCID,Xue Xingsi2ORCID,Geng Aifeng3,Ren He3ORCID

Affiliation:

1. School of Network Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, China

2. Intelligent Information Processing Research Center, Fujian University of Technology, Fuzhou, Fujian 350118, China

3. College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

In recent years, innovative positioning and mobile communication techniques have been developing to achieve Location-Based Services (LBSs). With the help of sensors, LBS is able to detect and sense the information from the outside world to provide location-related services. To implement the intelligent LBS, it is necessary to develop the Semantic Sensor Web (SSW), which makes use of the sensor ontologies to implement the sensor data interoperability, information sharing, and knowledge fusion among intelligence systems. Due to the subjectivity of sensor ontology engineers, the heterogeneity problem is introduced, which hampers the communications among these sensor ontologies. To address this problem, sensor ontology matching is introduced to establish the corresponding relationship between different sensor terms. Among all ontology matching technologies, Particle Swarm Optimization (PSO) can represent a contributing method to deal with the low-quality ontology alignment problem. For the purpose of further enhancing the quality of matching results, in our work, sensor ontology matching is modeled as the meta-matching problem firstly, and then based on this model, aiming at various similarity measures, a Simulated Annealing PSO (SAPSO) is proposed to optimize their aggregation weights and the threshold. In particular, the approximate evaluation metrics for evaluating quality of alignment without reference are proposed, and a Simulated Annealing (SA) strategy is applied to PSO’s evolving process, which is able to help the algorithm avoid the local optima and enhance the quality of solution. The well-known Ontology Alignment Evaluation Initiative’s benchmark (OAEI’s benchmark) and three real sensor ontologies are used to verify the effectiveness of SAPSO. The experimental results show that SAPSO is able to effectively match the sensor ontologies.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3