Affiliation:
1. Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
2. Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
3. Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa-El-Gharbia 30100, Israel
Abstract
Diabetes mellitus is a metabolic disease that predominates, nowadays. It causes hyperglycemia and consequently major health complications. Type II diabetes is the most common form and is a result of insulin resistance in the target tissues. To treat this disease, several mechanisms have been proposed. The most direct route is via inhibiting the intestinal enzymes, e.g., α-glucosidase and α-amylase, responsible for intestinal polysaccharide digestion that therefore would reduce the absorption of monosugars through the intestinal walls. In this study, we shed the light on this route by testing the inhibitory effect of Ocimum basilicum extract on the enzymes α-glucosidase and α-amylase in vitro and in silico. Experimental procedures were performed to test the effect of the O. basilicum methanol extract from aerial parts followed by the in silico docking. 500 μg/mL of the extract led to 70.2% ± 8.6 and 25.4% ± 3.3 inhibition on α-glucosidase and α-amylase activity, respectively. Similarly, the effect of caffeic acid, a major extract ingredient, was also tested, and it caused 42.7% ± 3.0 and 47.1% ± 4.0 inhibition for α-amylase and α-glucosidase, respectively. Docking experiments were performed to predict the phytochemicals responsible for this robust inhibitory activity in the O. basilicum extracts. Several compounds have shown variable levels of inhibition, e.g., caffeic acid, pyroglutamic acid, and uvasol. The results indicated that O. basilicum can be a potent antidiabetic drug.
Funder
Palestinian-German Funding Program
Subject
Complementary and alternative medicine
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献