Novel Approach to 2D DOA Estimation for Uniform Circular Arrays Using Convolutional Neural Networks

Author:

Chen Dong12ORCID,Joo Younghoon2ORCID

Affiliation:

1. School of Electronic and Information Engineering, Jiujiang University, Jiujiang 332005, China

2. School of IT Information and Control Engineering, Kunsan National University, Gunsan 54150, Republic of Korea

Abstract

This paper presents a novel efficient high-resolution two-dimensional direction-of-arrival (2D DOA) estimation method for uniform circular arrays (UCA) using convolutional neural networks. The proposed 2D DOA neural network in the single source scenario consists of two levels. At the first level, a classification network is used to classify the observation region into two subregions (0°, 180°) and (180°, 360°) according to the azimuth angle degree. The second level consists of two parallel DOA networks, which correspond to the two subregions, respectively. The input of the 2D DOA neural network is the preprocessed UCA covariance matrix, and its outputs are the estimated elevation angle to be modified by postprocessing and the estimated azimuth angle. The purpose of the postprocessing is to enhance the proposed method’s robustness to the incident signal frequency. Moreover, in the inevitable array imperfections scenario, we also achieve 2D DOA estimation via transfer learning. Besides, although the proposed 2D DOA neural network can only process one source at a time, we adopt a simple strategy that enables the proposed method to estimate the 2D DOA of multiple sources in turn. Finally, comprehensive simulations demonstrate that the proposed method is effective in computation speed, accuracy, and robustness to the incident signal frequency and that transfer learning could significantly reduce the amount of required training data in the case of array imperfections.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3