Effects of Synthetic Procedures and Postsynthesis Incubation pH on Size, Shape, and Antibacterial Activity of Copper (I) Oxide Nanoparticles

Author:

Nguyen Vinh Tien1ORCID,Trinh Khanh Son1ORCID

Affiliation:

1. Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc District, Ho Chi Minh City, Vietnam

Abstract

Copper (I) oxide nanoparticles (Cu2O NP) were synthesized by reducing CuSO4 with glucose in the presence of polyvinyl alcohol as a capping agent. We used three different synthetic procedures with a fast reaction (procedure 1p), a fast-then-slow reaction (procedure 2p), and a slow-then-fast reaction (procedure 3p). The reaction rates were controlled by changing the temperature and the speed of adding reagents. The synthesized Cu2O NP were subsequently incubated for 24 h in a pH 6 solution (Cu2O NP6) or a pH 8 solution (Cu2O NP8) at 5°C. XRD and SEM images analysis revealed that the 1p procedure produced smaller NP, while the 2p procedure produced larger but more uniform NP. The 3p procedure produced the largest NP with a higher size variation. The 24-hour acidic postsynthesis incubation resulted in an etching effect, which reduced the size and size variation of Cu2O NP6. To evaluate the antibacterial activity, E. coli suspensions were mixed with the obtained Cu2O NP (32, 96, or 160 ppm) for different time intervals (1 or 24 h) and then grown on Petri dishes at 37°C for 24 h. Higher doses, smaller sizes of Cu2O NP, and longer contact times with the bacterial suspension resulted in higher inactivation efficiencies. Cu2O NP6 showed higher antibacterial effects at low doses, possibly due to the etching effect and the positive surface charge. Increasing the Cu2O doses from 32 to 96 and 160 ppm noticeably increased the antibacterial effect of the Cu2O NP8, but not significantly for Cu2O NP6. We suggested that the Cu2O NP6 suffered from agglomeration at high doses due to their high surface activity and low surface charges.

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3