Analysis of Basketball Technical Movements Based on Human-Computer Interaction with Deep Learning

Author:

Meng Xu-Hong1,Shi Hong-Ying1ORCID,Shang Wei-Hong1

Affiliation:

1. Basic Teaching Department, Hebei Vocational University of Industry and Technology, Shijiazhuang 050091, China

Abstract

With the continuous development of computer technology, analysis techniques based on various types of sports data sets are also evolving. One typical representative is image-based motion recognition technology, which enables video action recognition with a certain degree of feasibility. In basketball technical action videos, technical action has obvious characteristics. The athletes in the footage in sports videos are relatively fixed, and the scenes are relatively homogeneous, so technical action analysis of basketball technical action videos has certain advantages. However, there are many challenges in basketball technical action recognition, mainly including the fact that basketball techniques are numerous and complex. To address the above issues, this research proposes a 3D convolutional neural network framework that two different resolution image inputs are performed on the basketball technical action dataset. The experimental results show that the algorithmic process designed in this study is effective for action recognition on the basketball technical action dataset.

Funder

Hebei Vocational University of Industry and Technology

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Egocentric intention object prediction based on a human-like manner;Egyptian Informatics Journal;2024-06

2. Research on Deep Learning-Based Recognition Technology for Violations in Live Electricity Operations;2024 IEEE 4th International Conference on Power, Electronics and Computer Applications (ICPECA);2024-01-26

3. Efficient key frame extraction and hybrid wavelet convolutional manta ray foraging for sports video classification;The Imaging Science Journal;2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3