Affiliation:
1. Basic Teaching Department, Hebei Vocational University of Industry and Technology, Shijiazhuang 050091, China
Abstract
With the continuous development of computer technology, analysis techniques based on various types of sports data sets are also evolving. One typical representative is image-based motion recognition technology, which enables video action recognition with a certain degree of feasibility. In basketball technical action videos, technical action has obvious characteristics. The athletes in the footage in sports videos are relatively fixed, and the scenes are relatively homogeneous, so technical action analysis of basketball technical action videos has certain advantages. However, there are many challenges in basketball technical action recognition, mainly including the fact that basketball techniques are numerous and complex. To address the above issues, this research proposes a 3D convolutional neural network framework that two different resolution image inputs are performed on the basketball technical action dataset. The experimental results show that the algorithmic process designed in this study is effective for action recognition on the basketball technical action dataset.
Funder
Hebei Vocational University of Industry and Technology
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献