Hybrid Pulse High-Frequency Voltage Injection Control Algorithm of Sensorless IPMSM for Vehicles

Author:

Wu Jingbo12ORCID,Wang Yongwei1,Guo Zhijun1

Affiliation:

1. College of Vehicle and Transportation Engineering, Henan University of Science and Technology, Luoyang 471003, China

2. Henan Key Laboratory of Automobile Energy Conservation and New Energy, Luoyang 471003, China

Abstract

A hybrid pulse vibration high-frequency voltage signal injection method is proposed to solve the problems that the conventional sensorless control algorithm of vehicle IPMSM may generate a large estimated rotor position error and opposite directions in identifying the polarity of magnetic poles under zero-speed and high-torque starting and low-speed operation. The magnetic pole polarity is identified by the saturation effect of the flux chain by injecting a high-frequency sinusoidal voltage signal and opposite pulse voltage signal into the axis d ^ of the assumed coordinate system simultaneously. Subsequently, the position relationship between the assumed d ^ axis and the actual d axis is studied in accordance with the amplitude of response current to acquire the rotor position and speed information. The simulation and experimental results suggest that the algorithm is capable of accurately identifying the magnetic pole polarity and estimating the rotor position at zero speed and low speeds, starting the motor smoothly at zero speed, and then operating the motor stably at low speeds.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Direct torque control technology of permanent magnet synchronous motor;Eighth International Conference on Energy System, Electricity, and Power (ESEP 2023);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3