Optimal Deep Learning-Based Vocal Fold Disorder Detection and Classification Model on High-Speed Video Endoscopy

Author:

Sakthivel S.1ORCID,Prabhu V.2

Affiliation:

1. Department of Computer Science and Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai, India

2. Department of Electronics and Communication Engineering, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India

Abstract

The use of high-speed video-endoscopy (HSV) in the study of phonatory processes linked to speech needs the precise identification of vocal fold boundaries at the time of vibration. The HSV is a unique laryngeal imaging technology that captures intracycle vocal fold vibrations at a higher frame rate without the need for auditory inputs. The HSV is also effective in identifying the vibrational characteristics of the vocal folds with an increased temporal resolution during retained phonation and flowing speech. Clinically significant vocal fold vibratory characteristics in running speech can be retrieved by creating automated algorithms for extracting HSV-based vocal fold vibration data. The best deep learning-based diagnosis and categorization of vocal fold abnormalities is due to the usage of HSV (ODL-VFDDC). The suggested ODL-VFDDC technique starts with temporal segmentation and motion correction to identify vocalized regions from the HSV recording and gathers the position of movable vocal folds across frames. The attributes gathered are fed into the deep belief network (DBN) model. Furthermore, the agricultural fertility algorithm (AFA) is used to optimize the hyperparameter tuning of the DBN model, which improves classification results. In terms of vocal fold disorder classification, the testing results demonstrated that the ODL-VFDDC technique beats the other existing methodologies. The farmland fertility algorithm (FFA) is then used to accurately determine the glottal limits of vibrating vocal folds. The suggested method has successfully tracked the speech fold boundaries across frames with minimum processing cost and high resilience to picture noise. This method gives a way to look at how the vocal folds move during a connected speech that is completely done by itself.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of vocal fold disorders based on high speed videos;2024 IEEE 12th International Symposium on Signal, Image, Video and Communications (ISIVC);2024-05-21

2. Classification of vocal fold disorders in high speed videos by deep learning;2023 International Conference on Cyberworlds (CW);2023-10-03

3. Development and Application of Automated Vocal Fold Tracking Software in a Rat Surgical Model;The Laryngoscope;2023-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3