Affiliation:
1. Department of Radiology, Wenzhou Seventh People’s Hospital, Ouhai District, Wenzhou City, Zhejiang Province 325006, China
Abstract
Computer-aided diagnosis and treatment of multimodal magnetic resonance imaging (MRI) brain tumor image segmentation has always been a hot and significant topic in the field of medical image processing. Multimodal MRI brain tumor image segmentation utilizes the characteristics of each modal in the MRI image to segment the entire tumor and tumor core area and enhanced them from normal brain tissues. However, the grayscale similarity between brain tissues in various MRI images is very immense making it difficult to deal with the segmentation of multimodal MRI brain tumor images through traditional algorithms. Therefore, we employ the deep learning method as a tool to make full use of the complementary feature information between the multimodalities and instigate the following research: (i) build a network model suitable for brain tumor segmentation tasks based on the fully convolutional neural network framework and (ii) adopting an end-to-end training method, using two-dimensional slices of MRI images as network input data. The problem of unbalanced categories in various brain tumor image data is overcome by introducing the Dice loss function into the network to calculate the network training loss; at the same time, parallel Dice loss is proposed to further improve the substructure segmentation effect. We proposed a cascaded network model based on a fully convolutional neural network to improve the tumor core area and enhance the segmentation accuracy of the tumor area and achieve good prediction results for the substructure segmentation on the BraTS 2017 data set.
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献