A Parallel Spiking Neural Network Based on Adaptive Lateral Inhibition Mechanism for Objective Recognition

Author:

Fu Qiang1ORCID,Dong Hongbin1ORCID

Affiliation:

1. College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China

Abstract

Spiking neural network (SNN) has attracted extensive attention in the field of machine learning because of its biological interpretability and low power consumption. However, the accuracy of pattern recognition cannot completely surpass deep neural networks (DNNs). The main reason is that the inherent nondifferentiability of spiking neurons makes SNN unable to be trained directly by the gradient descent algorithm, and there is also no unified training algorithm for SNN. Inspired by the biological vision system, this paper proposes a parallel convolution SNN structure combined with an adaptive lateral inhibition mechanism. And, a way of dynamically evolving the time constant with the training of SNN is proposed to ensure the diversity of neurons. This paper verifies the effectiveness of the proposed methods on static datasets and neuromorphic datasets and extends it to the recognition of breast tumors. Experimental results show that the SNN has obvious advantages in dynamical datasets. For breast tumors, it is also an edge-based task, because the edge of a medical image contains the most important information in the image. This kind of information can provide great help for the noninvasive and accurate diagnosis of diseases. The Experimental results show that the proposed method is very close to the recognition results of DNNs on static datasets, and its performance on neuromorphic datasets exceeds that of DNNs.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3