Research on Multipoint Leak Location of Gas Pipeline Based on Variational Mode Decomposition and Relative Entropy

Author:

Hao Yongmei1ORCID,Du Zhanghao1,Jiang Juncheng1,Xing ZhiXiang1,Yan Xinming2,Wang Shuli1,Rao Yongchao1

Affiliation:

1. School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China

2. Changzhou Branch of Jiangsu Special Equipment Safety Supervision and Inspection Institute, Changzhou 213161, China

Abstract

Pipeline leak detection has always been a relatively difficult technical problem; especially in urban pipeline leak detection, there are still many problems to be solved. A multipoint leak detection and location method for urban gas pipelines based on variational mode decomposition and relative entropy was proposed. Firstly, the experiment pipeline system was built, and the original signal was collected by acoustic emission technology; then, a variational model method was used to decompose the signal to obtain multiple intrinsic mode function (IMF) components with different characteristic scales. According to the characteristics of relative entropy, each component was analyzed, the appropriate IMF component was selected, and the selected component was reconstructed to obtain the observation signal. The multipoint leakage location model of the urban gas pipeline was established. The number of source signals was estimated by singular value decomposition, and the leakage signals were separated; finally, the accurate location of leakage point was achieved by cross-correlation positioning. The results showed that the average relative error of the pipeline leak location results is 2.97%, and the leak location accuracy is significantly improved, achieving the purpose of precise location.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3