Affiliation:
1. College of Information and Network Security, People’s Public Security University of China, Beijing, China
Abstract
In recent years, the number of malware on the Android platform has been increasing, and with the widespread use of code obfuscation technology, the accuracy of antivirus software and traditional detection algorithms is low. Current state-of-the-art research shows that researchers started applying deep learning methods for malware detection. We proposed an Android malware detection algorithm based on a hybrid deep learning model which combines deep belief network (DBN) and gate recurrent unit (GRU). First of all, analyze the Android malware; in addition to extracting static features, dynamic behavioral features with strong antiobfuscation ability are also extracted. Then, build a hybrid deep learning model for Android malware detection. Because the static features are relatively independent, the DBN is used to process the static features. Because the dynamic features have temporal correlation, the GRU is used to process the dynamic feature sequence. Finally, the training results of DBN and GRU are input into the BP neural network, and the final classification results are output. Experimental results show that, compared with the traditional machine learning algorithms, the Android malware detection model based on hybrid deep learning algorithms has a higher detection accuracy, and it also has a better detection effect on obfuscated malware.
Funder
National Cryptography Development Fund of China
Subject
Computer Networks and Communications,Information Systems
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献