Study on Buckling Behavior of Tapered Friction Piles in Soft Soils with Linear Shaft Friction

Author:

Liu Junxiu12,Shao Xianfeng3,Cheng Baoquan4ORCID,Cao Guangyong12ORCID,Li Kai12ORCID

Affiliation:

1. College of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China

2. Anhui Province Key Laboratory of Building Structure and Underground Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China

3. State Grid Anhui Electric Power Co., Ltd. Construction Company, Hefei, Anhui 230001, China

4. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

Abstract

The buckling instability of long slender piles in soft soils is a key consideration in geoengineering design. By considering both the linear shaft friction and linear lateral stiffness of the soft soil, the buckling behaviors of a tapered friction pile embedded in heterogeneous soil are extensively studied. This study establishes and validates an analytical model to formulate the equilibrium equations and boundary conditions and then numerically solves the boundary value problem to obtain the critical buckling load and buckling shape by using software Matlab. The effects of boundary conditions, tapered ratio, stiffness ratio, friction ratio, lateral stiffness, and shaft friction on the buckling behavior of the friction pile are extensively explored. This study demonstrates that the buckling load decreases with the increase of friction ratio of the linear shaft friction. There exists an optimal tapered ratio corresponding to the maximum dimensionless buckling load in the tapered friction pile with linear shaft friction. The result means that the linear shaft friction should be considered in designing the tapered friction piles in heterogeneous soils. The results also have potential applications in the fields of growing of tree roots in soils, moving of slender rods in viscous fluids, penetrating of fine rods in soft elastomers, etc.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3