Accelerometer-Based Automated Counting of Ten Exercises without Exercise-Specific Training or Tuning

Author:

Zelman Samuel1ORCID,Dow Michael1,Tabashum Thasina2ORCID,Xiao Ting2ORCID,Albert Mark V.234ORCID

Affiliation:

1. Illinois Math and Science Academy, Aurora, IL 60506, USA

2. Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, USA

3. Department of Biomedical Engineering, University of North Texas, Denton, TX 76203, USA

4. Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA

Abstract

Measuring physical activity using wearable sensors is essential for quantifying adherence to exercise regiments in clinical research and motivating individuals to continue exercising. An important aspect of wearable activity tracking is counting particular movements. One limitation of many previous models is the need to design the counting for a specific exercise. However, during physical therapy, some movements are unique to the patient and also valuable to track. To address this, we create an automatic repetition counting system that is flexible enough to measure multiple distinct and repeating movements during physical therapy without being trained on the specific motion. Accelerometers, using smartphones, were attached to the body or held by participants to track repetitive motions during different exercises. 18 participants completed a series of 10 exercises for 30 seconds, including arm circles, bicep curls, bridges, sit-ups, elbow extensions, leg lifts, lunges, push-ups, squats, and upper trunk rotations. To count the repetitions of each exercise, we apply three analysis techniques: (a) threshold crossing, (b) threshold crossing with a low-pass filter, and (c) Fourier transform. The results demonstrate that arm circles and push-ups can be tracked well, while less periodic and irregular motions such as upper trunk rotations are more difficult. Overall, threshold crossing with low-pass filtering achieves the best performance among these methods. We conclude that the proposed automatic counting system is capable of tracking exercise repetition without prior training and development for that activity.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3