Analysis of the Damage Characteristics and Energy Dissipation of Rocks with a Vertical Hole under Cyclic Impact Loads

Author:

Dai Bing123ORCID,Luo Xinyao1,Chen Li2,Tian Yakun1ORCID,Zhang Zhijun13ORCID,Chen Ying13ORCID,Shan Qiwei1

Affiliation:

1. School of Resources Environment and Safety Engineering, University of South China, Hengyang, China

2. Deep Mining Laboratory of Gold Group Co., Ltd, Laizhou, China

3. Hunan Province Engineering Technology, Research Center for Disaster Prediction and Control on Mining Geotechnical Engineering, 421001 Hengyang, China

Abstract

This study systematically investigates the failure patterns, energy dissipation, and fracture behavior of rock specimens containing a vertical hole under impact loads. First, an improved damage calculation equation suitable for the analysis of rock specimens with a vertical hole is obtained based on the one-dimensional stress wave theory and the interface continuity condition. After that, the Hopkinson pressure bar (SHPB) device was used to conduct cyclic impact tests with different impact pressures and impact modes (impact pressures with equal amplitude and unequal amplitude). The experimental results suggest that, under the equal-amplitude high pressure and unequal-amplitude pressure, the degree of damage of the rock significantly increased, the bearing capacity greatly reduced, and the rock gradually transitions from having good ductility to experiencing brittle failure. The cumulative specific energy absorption value gradually increases with the increase in the cyclic impact. Compared to that of the equal impact condition, the degree of damage to the rock is more severe for the case of equal-amplitude high pressure and unequal impact, and the failure mode undergoes a transformation from transverse tensile failure to transverse tensile failure-axial splitting failure combination and axial splitting failure. Through the analysis of rock energy changes and rock failure patterns during cyclic impact, it will be helpful to predict and control the fracture caused by local stress concentration during excavation, thus can reduce the cost of support and reinforcement in excavation and improve the stability of surrounding rocks.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3