Nonlinear Seismic Response Characteristics of CAP1400 Nuclear Island Structure on Soft Rock Sites

Author:

Li Furong12ORCID,Chen Guoxing1ORCID

Affiliation:

1. Institute of Geotechnical Engineering, Nanjing Tech University, Nanjing 210009, China

2. College of Civil Engineering, Yancheng Institute of Technology, Yancheng 224051, China

Abstract

CAP1400 nuclear island structure is an advanced and novel nuclear power plant structure. In order to explore the seismic response characteristics of CAP1400 nuclear island structure on soft rock sites, a three-dimensional refined nonlinear seismic response analysis model was established for a soft rock foundation-nuclear island structure system using ABAQUS software. The influences of the input ground motion intensity and the frequency spectrum characteristics on the acceleration, relative displacement, and floor response spectrum, as well as the critical shear wave velocity of nonbedrock sites for CAP1400 nuclear island structure, were proposed. The results suggested that the increasing amplitude of the peak acceleration and relative displacement of nuclear island structure decreased as the soft rock site entered a nonlinear state, and the high-frequency components of the input ground motion became more abundant. Specifically, the earthquake response was the largest at the cooling water tank on the top of the shield building, which was the focus of the seismic research on nuclear island structure. Due to the influence of the ground motion frequency spectrum characteristics and the nonbedrock site effect, the peak acceleration, peak relative displacement, and acceleration response spectrum of the nuclear island structure showed different changing trends for the near-field and far-field ground motions. Based on the influence of the site shear wave velocity on the seismic response of nuclear island structure, it was recommended that the critical shear wave velocity of nonbedrock sites for CAP1400 nuclear island structure should be 1250 m/s, and the nuclear island structure-foundation dynamic interaction could be ignored at this time. The research conclusions could provide some technical support and theoretical basis for the construction and seismic performance research of CAP1400 and other nuclear power plants.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3